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Abstract

The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the
risk of damaging runoff and erosion events occurring after a fire. To meet this challenge, the Erosion Risk Management Tool (ERMiT) was
developed. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in
probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User
inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil
properties, which are then used as WEPP input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain
event erosion rates with a probability of occurrence for each of five postfire years. In addition, rain event erosion rate distributions are generated
for postfire hillslopes that have been treated with seeding, straw mulch, and erosion barriers such as contour-felled logs or straw wattles.
Published by Elsevier B.V.
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1. Introduction

Since 1990, in the western United States, there has been a
significant increase in the number, size, and severity of wildfires
(Joint Fire Science Program, 2004). High severity fires not only
consume or deeply char all vegetation, but also affect the
physical properties of soil (DeBano et al., 1998). These changes
alter watershed responses to rainfall causing increased runoff,
erosion, and downstream sedimentation, which can threaten
human life and damage property (Robichaud et al., 2000).
During these past 15 years, the population living in the
‘wildland-urban interface’ (lands surrounding urban areas) has
increased (Stewart et al., 2003), making protection of life and
property a significant challenge, not only for wildland fire
suppression efforts, but also for mitigation of damaging
hillslope and downstream effects (DeBano et al., 1998). United
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States land management agencies have spent tens of millions of
dollars on postfire emergency watershed stabilization measures
intended to minimize flood runoff, peakflows, onsite erosion,
offsite sedimentation, and other hydrologic damage to natural
habitats, roads, bridges, reservoirs, and irrigation systems
(General Accounting Office, 2003).

Following a fire, land managers choose which mitigation
actions, if any, are needed to protect life, property, and the
environment. Choices depend on 1) probability of the hazard—
i.e., the probability that damaging amounts of runoff and
erosion will occur; 2) lost resource value if the event occurs—
i.e., monetary value of resource lost or restoration (e.g., water
quality impairment, stream restoration, reservoir dredging, or
road repair) that would be needed if damaged; and 3) the cost
and effectiveness of potential mitigation. Although the costs or
value of potentially damaged resources and postfire mitigation
treatments can be determined, the probability of damaging
runoff and erosion occurring and the effectiveness of mitigation
treatments are not well established. Consequently, managers
often must assign these probabilities and estimate treatment
effectiveness based on past experience and consensus of
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Fig. 1. Five runoff events are selected from the 100-yr weather record generated
by CLIGEN. Each rain event associated with a selected runoff event is assigned
an occurrence probability based on a partitioning of the 100% cumulative
probability.
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opinion. Land managers need more information and effective
tools to determine hazard probabilities and balance the costs and
potential benefits of treatments.

Several technologies are currently used to estimate potential
postfire runoff and erosion. The most common are the Soil
Conservation Service Curve Number (CN) to estimate runoff
(Ponce and Hawkins, 1996) and the Revised Universal Soil
Loss Equation (RUSLE) to estimate erosion (Foster et al.,
1996). The RUSLE models were developed for cropland
applications and predict average annual erosion rather than
short-term risk (Fangmeier et al., 2005). Other models, such as
KINematic EROSion2 (KINEROS2) (Smith et al., 1995;
Goodrich et al., 2002) and Soil Water Assessment Tool
(SWAT) (Neitsch et al., 2002), have been developed for non-
agricultural applications and used extensively in rangeland
research. However, these tools are not easily accessed and used
by land managers.

The Water Erosion Prediction Project (WEPP) is a process-
based model that simulates rain splash, sheet flow, and
concentrated flow erosion processes, as well as the interactions
between these processes (Flanagan and Livingston, 1995;
Laflen et al., 1997). WEPP, developed for agricultural use
where soil and rainfall properties are easily measured and
hillslopes are uniform, could not be directly applied to wildland
environments where complex hillslope conditions are affected
by fire or other management activities. Fire effects on
hydrologic and erosion parameters are not well known, and
wildfires generally take place in steep, mountainous regions
where, due to orographic effects, available climate data are not
representative of the area to be modeled (Scheele et al., 2001).
In addition, soil properties often are less well known for these
remote areas than for croplands or valleys.

Recent efforts have produced adaptations of WEPP (Elliot,
2004) that allow land managers to assess the impacts of fire and
other disturbances on hydrological watershed responses in
forest and rangelands. One adaptation, Disturbed WEPP,
provides estimates of annual hillslope erosion in forest and
range environments given various management scenarios,
including prescribed fire and wildfire (Elliot et al., 2004).
Annual erosion predictions from Disturbed WEPP incorporate
some spatial variability of fire effects on soil and erosion
processes (Robichaud and Miller, 1999), but multiple runs are
needed to assess the effects of temporal variability.

The Erosion Risk Management Tool (ERMiT) was devel-
oped to address the need for an easily-used, postfire erosion
prediction tool that incorporates spatial and temporal variability
of fire effects, provides probabilities of postfire erosion rates
needed for risk analysis, and includes erosion mitigation
treatment effectiveness information (Robichaud et al., 2006).
ERMiT is a web-based application that predicts event sediment
delivery in probabilistic terms on burned and recovering forest,
range, and chaparral lands. The objectives of this article are to
describe: 1) the conceptual framework and components of the
ERMiT model; 2) the variability of rainfall, soil burn severity,
and soil properties (input parameters) that influence postfire
erosion; and 3) how the input parameter variabilities are
combined to produce a probability distribution of event-based
erosion rates with and without application of mitigation
treatments.

2. Components of ERMiT

2.1. WEPP

ERMiT uses WEPP technology as the runoff and erosion
calculation engine. WEPP simulates both interrill and rill
erosion processes and incorporates the processes of evapo-
transpiration, infiltration, runoff, soil detachment, sediment
transport, and sediment deposition to predict runoff and erosion
at the hillslope scale (Flanagan and Livingston, 1995).

2.2. CLIGEN

Through the ERMiT interface, stochastic weather files
generated by CLImate GENerator (CLIGEN) (Nicks et al.,
1995) are selected for use in WEPP. A CLIGEN weather file
includes daily precipitation amount, duration, time-to-peak, and
peak intensity; minimum, maximum, and dewpoint temperature;
and solar radiation, wind velocity, and wind direction values. To



Fig. 2. Each column of three overland flow elements (OFEs) represents a soil burn severity hillslope arrangement. Based on the user-designated soil burn severity
classification (high, moderate, or low), four arrangements of high (H) and low (L) soil burn severity OFEs are modeled. The assigned probability of occurrence for each
hillslope arrangement is indicated within the bracket of the burn severity user designation.
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generate a weather file, CLIGEN uses the climate information
(statistical characterizations from historical data of monthly
precipitation, minimum, maximum and dewpoint temperatures,
and solar radiation;monthly probabilities of a wet day following a
wet day and of a wet day following a dry day; a time-to-peak
Fig. 3. Data from postfire research sites throughout the western United St
distribution, and wind data) from one of the more than 2600
weather stations located throughout the United States.

These accessible weather stations are rarely located near the
remote areas being modeled by ERMiT, and the stations in
mountainous regions are usually in valleys such that even a
ates have been used to parameterize and validate the ERMiT model.



Table 1
The postfire value ranges for interrill erodibility (Ki), rill erodibility (Kr),
effective hydraulic conductivity (Ke), and critical shear (τc) by soil texture and
high or low soil burn severity are shown

Pre-fire
cover

Soil burn
severity

Clay
loam

Silt
loam

Sandy
loam

Loam

Forest
Ki (×10

3)
(kg-s m−4)

Low 200 to
500

250 to
600

300 to
1200

320 to
800

High 400 to
2000

500 to
2500

1000 to
3000

600 to
3200

Kr (×10
−4)

(s m−1)
Low 0.010 to

2.5
0.020 to
3.5

0.030 to
4.5

0.015 to
3.0

High 2.0 to
8.0

3.0 to
9.0

4.0 to
10

2.5 to
8.5

Ke (mm h−1) Low 25 to 8 33 to 9 48 to 14 40 to 18
High 13 to 2 18 to 3 22 to 5 27 to 4

τc (N m−2) Low 4 3.5 2 3
High 4 3.5 2 3

Range and chaparral
Ki (×10

3)
(kg-s m−4)

Shrub Low 13 to
170

16 to
230

75 to
930

3.4 to
93

High 39 to
170

49 to
230

230 to
930

11 to
93

Grass Low 1.9 to
15

12 to
150

50 to
650

2.6 to
63

High 6.6 to
85

40 to
840

170 to
3,600

9.0 to
350

Bare Low 39 to
170

49 to
840

230 to
3,600

11 to
350

High 39 to
170

49 to
840

230 to
3,600

11 to
350

Kr (×10
−4)

(s m−1)
Low 0.38 to

6.0
0.33 to
7.8

0.090 to
7.2

0.51 to
4.6

High 3.0 to
27

2.7 to
33

0.95 to
31

3.8 to
22

Ke (mm h−1) Shrub Low 15 to 6 22 to 8 29 to 9 22 to 8
High 11 to 5 16 to 6 21 to 6 16 to 6

Grass Low 13 to 5 26 to 10 17 to 8 15 to 5
High 10 to 4 21 to 8 14 to 7 12 to 4

Bare Low 10 to 4 21 to 8 14 to 7 12 to 4
High 10 to 4 21 to 8 14 to 7 12 to 4

τc (N m−2) Low 1.9 3.4 2.8 0.8
High 1.5 2.7 2.2 0.6

For range and chaparral lands, user-designated pre-fire canopy cover
proportions provide an additional level of classification for Ki and Ke values.
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nearby station may not be representative of the area to be
evaluated. Consequently, users may create custom climate
parameter files, based upon one of the supplied parameter files,
by using the integrated Rock:Clime web interface (Scheele
et al., 2001). Elevation and monthly mean minimum and max-
imum temperature, mean precipitation, and number of wet days
may be adjusted directly by the user, or by using values
provided by the Parameter-elevation Regressions on Indepen-
dent Slopes Model (PRISM) (Daly et al., 1994; Elliot, 2004)
data. PRISM's mean monthly precipitation data are distributed
on a 2.5-min grid over the conterminous United States. A
temperature lapse rate adjustment for orographic effects based
on an elevation differential is available.

3. Variability of ERMiT input parameters

Weather variability as well as the spatial and temporal
variability of soil parameter values (both inherent and in relation
to soil burn severity) are incorporated into ERMiT. The general
process used to incorporate weather and spatial variability is to
1) determine a range of parameter values (CLIGEN and field
measurements), 2) select representative values from the range,
and 3) assign ‘occurrence probabilities’ for each selected value.
The computational constraints of the model require that the sum
of occurrence probabilities for each source of variability adds to
100%. Thus, all possible parameter values are represented in the
model by the 4 to 5 selected values, and the cumulative
probability (100%) is divided among the 4 or 5 selected values.

Temporal variation, the change in soil parameter values over
time due to recovery, is modeled by changes in the occurrence
probabilities assigned to the selected values for each year of
recovery. Details of how recovery is accommodated in ERMiT
are described at the end of this section; thus, the occurrence
probabilities within this section, with the exception of the
recovery portion, are for the initial, postfire Year 1.

3.1. Precipitation

Rainfall intensity and duration influence two erosion
processes—raindrop impact and concentrated overland flow.
Since rill erosion from concentrated flow is the dominant
erosion process on steep hillslopes, runoff is the driving
mechanism for erosion and sediment delivery (Robichaud,
2000a). Consequently, runoff is the criterion used to select rain
event records for each ERMiT run.

A 100-year weather file, generated using CLIGEN, is used to
produce a 100-year runoff record for the combination of soil,
cover, and burn severity conditions that has the greatest potential
to generate runoff for the site. Because not all 100 years can be
modeled efficiently, the maximum runoff event from each year is
recorded and the years with the 5th, 10th, 20th, 50th, and 75th
ranked runoff events are selected for further analysis. Weather
data for one year prior to each selected year are used to maintain
soil moisture patterns for the selected runoff events. Thus, the
original 100-year weather record is reduced to a 6 to 10 year
record. Occurrence probabilities for the rain events associated
with the selected runoff events are 7.5, 7.5, 20, 27.5, and 37.5%,
respectively. Because each rain event that is modeled is used to
represent a range of potential rain events, occurrence probabil-
ities were derived from the ranking of the associated runoff
events and the difference between rankings (Fig. 1).

3.2. Hillslope characteristics

Topographic inputs (hillslope horizontal length and gradients
for top, middle, and toe) are user-specified and fixed for each
ERMiTrun. The top and toe gradients (i.e., steepness) are assigned
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to the upper and lower 10% with the middle gradient assigned to
the remaining 80% of hillslope length. Hillslope horizontal length
and top, middle, and toe gradients may be obtained from field
surveys, digital elevation models (DEM), topographic maps, or
geographical information system (GIS) data layers.

3.3. Soil burn severity

Fire effects on erosion are not homogeneous across the
landscape (Robichaud and Miller, 1999). Soil burn severity is a
description of the impact of a fire on the soil and litter. High soil
burn severity is associated with decreased ground cover,
increased soil water repellency, decreased infiltration and
increased erosion (DeBano et al., 1998; Robichaud, 2000b;
Benavides-Solorio and MacDonald, 2001; Pierson et al., 2001).
The soil burn severity of a fire varies widely in space, depending
on the topography as well as the pre-fire fuel load, moisture
conditions, weather, and the fire behavior. Areas that are drier,
such as those near ridge tops, and areas with greater amounts of
fuel may experience higher soil burn severity than areas that are
wetter, such as riparian areas or draws. This variability in soil
burn severity creates mosaic landscapes with varying portions
having low, moderate, and high soil burn severity (DeBano
et al., 1998).

Rainfall simulation experiments have shown that only two
soil burn severity classes, high and low, can be distinguished on
the basis of runoff and erosion (Robichaud, 1996; Brady et al.,
2001; Pierson et al., 2001); however, most postfire burn severity
classifications include three classes—high, moderate, and low.
Table 2
Based on the user-selected soil burn severity class (high, moderate, and low), th
elements (OFEs) and soil parameter sets are boxed

The OFEs, listed vertically in the top portion of the table, are repeated horizontally
sets. Occurrence probabilities are for the first postfire year.
a Values of Ki, Kr, Ke, and τc from the cumulative distribution function of the select
In ERMiT, each of the three user-designated soil burn severity
classes is modeled with a set of four spatial arrangements of
high and low burn severity overland flow elements (OFEs).
Each spatial arrangement consists of three OFEs on the modeled
hillslope (Fig. 2). In modeling the first postfire year, a high soil
burn severity user designation will apply four spatial arrange-
ments of 75% high (H) and 25% low (L) OFEs; a moderate soil
burn severity user designation will use four spatial arrange-
ments of 50% H and 50% L OFEs; and a low soil burn severity
user designation will use four spatial arrangements of 25% H
and 75% L OFEs (Fig. 2). Each spatial arrangement within each
soil burn severity class is assigned a probability of occurrence.
One of the four spatial arrangements on high soil burn severity
hillslopes has all three OFEs assigned H, and, similarly, one of
the four spatial arrangements on low soil burn severity
hillslopes has all three OFEs assigned L. To reduce the impact
of the less likely occurrence of hillslope conditions that are
uniformly high or low soil burn severity, the spatial arrange-
ments of all H and all L are assigned a 10% probability of
occurrence while the other three arrangements for a high or low
soil burn severity designation are each assigned a 30%
probability of occurrence. Each of the four moderate soil burn
severity OFE arrangements is assigned a 25% probability of
occurrence (Fig. 2). These spatial arrangements of high and low
OFEs allow ERMiT not only to simulate the spatial variability
of soil burn severity across the landscape, but also to simulate
situations where an area of low soil burn severity may absorb
runoff or filter out sediment that is leaving an upslope area with
high soil burn severity.
e 20 combinations of high (H) and low (L) soil burn severity overland flow

in the lower portion of table where they are combined with the soil parameter

ed range of values (Table 1).
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3.4. Soil properties

The postfire erosion potential of a soil depends on time since
the fire, soil texture, soil water repellency, ground cover, soil
moisture, and other factors that influence infiltration and soil
erodibility. The variable effects of postfire ground cover, soil
water repellency, and soil erodibility are modeled by variability
in interrill erodibility (Ki), rill erodibility (Kr), effective
hydraulic conductivity (Ke), and critical shear (τc) parameters.
The ranges of Ki, Kr, Ke, and τc values used in ERMiT were
derived from field measurements taken at postfire research sites
across the western United States (Fig. 3). These parameters are
grouped according to soil texture (clay loam, silt loam, sandy
loam, and loam) and high or low soil burn severity categories
(Table 1). Since loss of ground cover and water repellent soil
conditions often occur after high severity fires (Robichaud,
2000b), the measured Ke value ranges for high soil burn
Table 3
The occurrence probabilities for the rain events, soil burn severity downslope spatial ar
severity overland flow element), and the soil parameter sets are combined to provid
postfire Year 1

Selected rain event
[occurrence probability]
(%)

Soil burn severity
spatial arrangement
[occurrence probability]
(%)

Soil parameter set
[occurrence probability]
(%)

Rain event associated with
the 5th largest
runoff
[7.5]

HHH [10] Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

LHH [30]
HLH [30]
HHL [30]

Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

Rain event associated with
the 10th largest
runoff
[7.5]

HHH [10]
LHH [30]
HLH [30]
HHL [30]

Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

Rain event associated with
the 20th largest
runoff
[20]

HHH [10]
LHH [30]
HLH [30]
HHL [30]

Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

Rain event associated with
the 50th largest
runoff
[27.5]

HHH [10]
LHH [30]
HLH [30]
HHL [30]

Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

Rain event associated with
the 75th largest
runoff
[37.5]

HHH [10]
LHH [30]
HLH [30]

Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

HHL [30] Soil 1 [10]
Soil 2 [20]
Soil 3 [40]
Soil 4 [20]
Soil 5 [10]

Ten (first five and last five) of the 100 permutations are fully expanded to show com
aRO rain event = rain event associated with the ranked runoff event.
severity are approximately 40% less than the low soil burn
severity ranges (Table 1).

Values for hydraulic conductivity, Ke, are based on final
infiltration rates obtained using rainfall simulation on 0.5 and
1.0 m2 plots over a range of soil textures and burn severities
(Robichaud, 2000b; Pierson et al., 2001). The measured final
infiltration was multiplied by 0.40 for forests and by 0.30 for
range and chaparral to adjust for scale effects that were
determined from estimated infiltration rates on small water-
shed sites where runoff and erosion rates were measured.
WEPP reduces Ke in direct proportion to the user-input value
for ‘rock content,’ the percentage of soil volume that contains
rock fragments (i.e., 20% rock will reduce Ke by 20%). WEPP
imposes an upper limit for this rock content adjustment of
50%.

Interrill erodibility, Ki, value ranges were obtained from
small plot rainfall simulation experiments, which because of
rangements (H = high soil burn severity overland flow element; L = low soil burn
e 100 occurrence probabilities associated with 100 event erosion predictions for

100 permutations of the three sources of variability

Combined sources of variability Combined occurrence probability
(%)

(5th RO rain event) a (HHH) (Soil 1) (0.075)×(0.10)× (0.10)×100=0.08
(5th RO rain event) (HHH) (Soil 2) (0.075)×(0.10)× (0.20)×100=0.15
(5th RO rain event) (HHH) (Soil 3) (0.075)×(0.10)× (0.40)×100=0.30
(5th RO rain event) (HHH) (Soil 4) (0.075)×(0.10)× (0.20)×100=0.15
(5th RO rain event) (HHH) (Soil 5) (0.075)×(0.10)× (0.10)×100=0.08
15 combinations 15 calculated occurrence probabilities

20 combinations 20 calculated occurrence probabilities

20 combinations 20 calculated occurrence probabilities

20 combinations 20 calculated occurrence probabilities

15 combinations 15 calculated occurrence probabilities

(75th RO rain event) (HHL) (Soil 1) (0.375)×(0.30)× (0.10)×100=1.13
(75th RO rain event) (HHL) (Soil 2) (0.375)×(0.30)× (0.20)×100=2.25
(75th RO rain event) (HHL) (Soil 3) (0.375)×(0.30)× (0.40)×100=4.50
(75th RO rain event) (HHL) (Soil 4) (0.375)×(0.30)× (0.20)×100=2.25
(75th RO rain event) (HHL) (Soil 5) (0.375)×(0.30)× (0.10)×100=1.13

plete permutation sets.
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their short length (0.75 and 1.0 m), are restricted to interrill
erosion processes (Robichaud, 2000b; Brady et al., 2001;
Pierson et al., 2001). Rill erodibility, Kr, and critical shear, τc,
value ranges were calculated from rill detachment rates and total
shear measured during concentrated flow studies done on 4-m
long plots (Moffet et al., 2007-this issue).

In range and chaparral environments, field data have
shown that postfire values for Ki and Ke also vary by the
proportions of shrubs and grasses in the pre-fire vegetation
cover (Table 1). This is accounted for by adjusting Ki soil
parameter values within each soil texture–burn severity class
Table 4
The exceedance probability for each event sediment delivery prediction is comput
yield predictions

The example illustrated above shows that an event sediment delivery of 20.6 t h
sediment delivery predictions are shown.
aRO rain event = rain event associated with the ranked runoff event.
bOFE = overland flow element.
cH = high soil burn severity overland flow element; L = low soil burn severity over
using area-weighted means based on user-specified propor-
tions of pre-fire shrub and grass canopy cover, such that Ki =
(Ki shrub×%shrub)+ (Ki grass×%grass) + (Ki bare×%bare).

Not every burn severity–soil texture combination was
represented in the field sites where soil parameters were
measured. Statistical relationships between soil burn severity
and soil texture were developed where data were sufficient
(generally 2 to 3 soil textures) and extrapolated to soil
texture–soil burn severity combinations where data were
sparse. Thus, the measured burn severity effects (i.e., fire
effects on Ki, Kr, Ke, and τc) on some soil textures were used
ed as the sum of one plus the occurrence probabilities for all greater sediment

a− 1 has an exceedance probability of 9.9%. Note, only a portion of the 100

land flow element.

http://dx.doi.org/10.1016/j.catena.2007.03.008


Table 6
With each year of postfire recovery, the occurrence probabilities and the selection
of soil burn severity overland flowelement (OFE) arrangements (H= high soil burn
severity overland flow element; L = low soil burn severity overland flow element)
are shifted toward lower soil burn severity

Hillslope
burn
severity
OFEs

Occurrence probability (%)

Year 1 Year 2 Year 3 Year 4 Year 5

User selected high soil burn severity
HHH 10 0 0 0 0
LHH 30 25 0 0 0
HLH 30 25 25 0 0
HHL 30 25 25 25 0
LLH 0 25 25 25 25
LHL 0 0 25 25 25
HLL 0 0 0 25 25
LLL 0 0 0 0 25

User selected moderate soil burn severity
HHH 0 0 0 0 0
LHH 0 0 0 0 0
HLH 25 0 0 0 0
HHL 25 25 0 0 0
LLH 25 25 25 25 25
LHL 25 25 25 25 25
HLL 0 25 25 25 25
LLL 0 0 25 25 25

User selected low soil burn severity
HHH 0 0 0 0 0
LHH 0 0 0 0 0
HLH 0 0 0 0 0
HHL 0 0 0 0 0
LLH 30 25 25 25 25
LHL 30 25 25 25 25
HLL 30 25 25 25 25
LLL 10 25 25 25 25

Table 5
To model change over time, the occurrence probability of Soil 1 and Soil 2 (the
less erodible soil parameters sets) are increased and Soil 3, Soil 4, and Soil 5 (the
more erodible soil parameters sets) are decreased for each year of postfire
recovery

Soil
parameter
set

Occurrence probability (%)

Year 1 Year 2 (monsoon) Year 3 Year 4 Year 5

Soil 1 10 30 (12) 50 60 70
Soil 2 20 30 (21) 30 30 27
Soil 3 40 20 (38) 18 8 1
Soil 4 20 19 (19.5) 1 1 1
Soil 5 10 1 (9.5) 1 1 1

Year 2 variations for monsoonal climates are shown in parenthesis.
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to estimate soil burn severity effects on soil texture–burn
severity groups where only the unburned condition was
measured. Future field measurements will be used to fill data
gaps and refine current parameter estimates. The ERMiT code
was designed to easily incorporate such improvements.

To capture within-class variability of Ki, Kr, Ke, and τc,
which, in some cases, have a range of values that vary by
two orders of magnitude (Table 1), values within each soil
texture–burn severity range are assigned probabilities of
occurrence. To do this, each Ki, Kr, and τc value range was
converted to a cumulative distribution function (CDF) with
values arranged from least to most erodible. The CDF for the
Ke value range was arranged from highest to lowest hydraulic
conductivity. From each CDF the 5th, 20th, 50th, 80th, and
95th percentile values (mean±approximately two standard
deviations) were assigned occurrence probabilities of 10%,
20%, 40%, 20%, and 10%, respectively. For example, all the
Ki values (500,000 to 2,500,000 kg-s m− 4) for silt loam
soil texture, forest vegetation type, burned at high severity
(Table 1) were converted to a CDF, and the percentile val-
ues listed above were assigned their respective occurrence
probabilities.

The selected values of Ki, Kr, Ke, and τc for each soil burn
severity–soil texture range are grouped by percentile ranking
into five soil parameter sets, such that all the 5th percentile
values are grouped in ‘Soil 1;’ 20th percentile values are
grouped in ‘Soil 2;’ 50th percentile values are grouped in ‘Soil
3;’ 80th percentile values are grouped in ‘Soil 4;’ and 95th
percentile values are grouped in ‘Soil 5.’ As a result, each burn
severity–soil texture class has five soil parameter sets (each
with a probability of occurrence) that are used by ERMiT to
generate sediment delivery predictions.

4. Combining the sources of variation

To combine soil burn severity variability with soil parameter
variability, the soil parameter sets—one for high soil burn
severity and one for low soil burn severity—are combined with
each of the soil burn severity spatial arrangements. The resultant
matrix has the most erodible/lowest hydraulic conductivity in
the lower left corner and the least erodible/greatest hydraulic
conductivity soil parameter set in the upper right corner as
shown in Table 2. For example, given a high soil burn severity
user input, theWEPP runs would include the 20 combinations of
soil parameters and high/low soil burn severity OFEs boxed
under ‘HIGH soil burn severity selected’ in Table 2. The ‘Soil5’
parameter set and the ‘HHH’ soil burn severity spatial
arrangement results in WEPP modeling a hillslope using 95th
percentile values of the high soil burn severity ranges for Ki, Kr,
Ke, and τc for all three OFEs. Another combination for the same
user selections would be soil parameter set ‘Soil3’ and soil burn
severity spatial pattern ‘HLH’. In this case, WEPP models a 3-
OFE hillslope using 50th percentile values of the high soil burn
severity ranges for Ki, Kr, Ke, and τc on the top and bottom
OFEs, and 50th percentile values of low soil burn severity ranges
for Ki, Kr, Ke, and τc for the middle OFE.

To include the third source of variability, the 20 groups of soil
burn severity–soil parameter sets are combined with the weather
data. Using the reduced CLIGEN file of 6–10 years, WEPP runs
in ‘continuous mode’ to produce erosion predictions for those
years. From these WEPP runs, the five representative single
event erosion predictions are extracted from the output and
paired with the assigned occurrence probabilities (Fig. 1). The
occurrence probabilities for the 100 combinations of 5 rain
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events, 4 soil burn severity spatial arrangements, and 5 soil
parameter sets are calculated as the product of the occurrence
probabilities due to each source of variation (Table 3). For
example, the occurrence probability for the event sediment
delivery prediction given the rain event associated with the
5th largest runoff (7.5% probability, Fig. 1), the HHH soil burn
severity spatial arrangement (10% probability, Fig. 2), and
the Soil3 soil parameter set (40% probability, Table 2) is
(0.075)× (0.10)× (0.40)=0.003, or 0.3% (row 3 in Table 3).

The 100 sediment delivery predictions are paired with the
combined occurrence probability, and sorted in descending
order. The ‘exceedance probability’ for each sediment delivery
prediction is computed as the sum of the occurrence proba-
bilities for all greater sediment yield predictions (Table 4). An
additional 1% is added to the sum of occurrence probabilities to
avoid a zero exceedance probability (0%) being reported for
the least likely combination of parameters (row 1 of Table 4).

4.1. Burned site recovery

Erosion rates generally decline with each year of postfire
recovery, largely due to increases in natural ground cover and
breakdown of water repellent soil conditions (Robichaud and
Brown, 2000). Each ERMiT run produces sediment delivery
predictions for every permutation of input parameters, and these
are not changed nor is WEPP re-run to predict sediment yields
during the postfire recovery years. To model the effects of
Fig. 4. The ERMiT input screen with user desig
recovery, ERMiT changes the occurrence probabilities of soil
parameter sets and soil burn severity spatial arrangements. Over
the five years of modeled recovery, the occurrence probabilities
of the less erodible soil parameters (Soil 1 and Soil 2 soil
parameter sets) are increased and the more erodible soil
parameters (Soil 4 and Soil 5 soil parameter sets) are decreased
(Table 5). In addition, the occurrence probabilities, as well as
the selection of soil burn severity OFE spatial arrangements,
shift toward lower erosion with each year of recovery (Table 6).
These yearly adjustments to occurrence probabilities and OFE
selections are based on field measurements made through
postfire recovery periods. As additional recovery data are
collected, this shift can be refined.

July, August, and September are the monsoon months for the
southwestern US. Because monsoon rains usually come in short
bursts of rainfall and do not provide dependable wet cycles,
postfire recovery is slower in areas affected by monsoons than
in other environments. Consequently, if rainfall data reflect
monsoon rainfall characteristics (i.e., total precipitation less
than 600 mm yr−1 and [ΣJul, Aug, Sep precipitation] / [annual
precipitation] is greater than 0.3), then the Year 2 occurrence
probabilities for the five soil parameter sets are adjusted
(Table 5). This adjustment, based on field observations at
the Indian Fire in Arizona and the Hayman Fire in Colorado
(P. Robichaud, unpublished data), will predict larger Year 2
sediment deliveries for areas with monsoon rainfall character-
istics than in areas with other rainfall patterns. Sediment
nations for the example scenario inserted.
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delivery predictions for Year 1 and for Year 3 and beyond are
calculated with the same soil parameter set occurrence
probabilities for all rainfall patterns.

4.2. Example

An example ERMiT run is presented to illustrate the user
interface and model output formats and to describe the sediment
delivery prediction analyses. The context for this example run is
the 2000 Valley Complex Fires that burned in the Bitterroot
National Forest of Montana. This large wildfire burned many
steep hillslopes at high severity. The water quality of the streams
and rivers within the burned area is a highly valued resource that
was at risk from large increases in sedimentation. This example
ERMiT run is for a 250 m slope above Rye Creek, which has a
Fig. 5. A portion of the ERMiToutput for the example scenario shows the user-design
selected runoff events (1st ranked runoff event is shown in row one of the table, bu
associated with the selected runoff events.
sandy loam soil with 20% rock content. The hillslope gradients
are 10% at the top, 40% at mid-slope, and 20% at the toe
(Fig. 4).

4.3. Model output

The ERMiT output screen reports user inputs, summarizes
the precipitation and runoff for the 100-year WEPP run using
PRISM-modified climate data, and describes the five rain
events associated with selected runoff events that were used to
create the reduced climate file (Fig. 5). Below the inputs and
selected rain event summaries, a graphical output shows the
single-rain event, postfire, hillslope sediment delivery excee-
dance probabilities plotted against the predicted event sediment
delivery for each of the first five postfire years (Fig. 6). The
ated inputs, summary statistics for the 100-yr climate generated by CLIGEN, the
t is not one of the selected events), and rainfall parameters for the rain events



Fig. 6. The graphic portion of the ERMiT output shows single-rain event
sediment delivery exceedance probabilities plotted against predicted event
sediment deliveries for the untreated hillslope of the example scenario. Each of
the first five postfire years is indicated by a separate line on the graph.
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spacing between the plotted lines for each year provides an
indication of the predicted recovery rate for the hillslope being
modeled (Fig. 6). These data for the untreated hillslope are also
included in the tabular output interface discussed in the
following section.

5. Treatment effectiveness

The decision to apply postfire treatments to reduce runoff
and erosion is based on a cost–benefit analysis—assessing the
probability that damaging erosion will occur, the need for and
cost of restoring damaged resources, the probability of re-
ducing erosion with applied mitigation treatments, the costs of
treatment application, and the savings realized by reducing
resource damage. Using data from rainfall and rill simulations,
hillslope plots, and paired catchment studies, estimates of
the erosion reduction and/or sediment trapping efficiency of
seeding, straw mulching, and contour-felled log/straw wattle
erosion barrier treatments have been incorporated into ERMiT.
In general, treatment effects are modeled by increasing the
occurrence probabilities of the less erosive soil parameter sets
(Soil 1, and Soil 2) and reducing the occurrence probabilities of
the more erosive soil parameter sets (Soil 3, Soil 4, and Soil 5).
Probabilistic predictions of single event sediment delivery with
and without applied treatments are generated for five postfire
years.

Beyers (2004) and Robichaud et al. (2000) reported that
seeding had little measured effect in reducing first postfire year
erosion; however, seeding effects are more evident in the second
and subsequent years. In ERMiT, occurrence probabilities
associated with the soil parameter sets are adjusted to reflect the
increase in ground cover and subsequent decrease in erosion in
Years 2 to 5.

Erosion reduction due to the application of straw mulch has
been measured at four sites (Robichaud, unpublished data). In
ERMiT, four straw mulch application rates (1, 2, 3.5, and 4.5 t
ha−1), which increase ground cover to 47, 72, 89, and 94%,
respectively, are modeled. The sediment delivery predictions
based on mulching rate are produced by adjusting the oc-
currence probabilities associated with the soil parameters sets,
similar to the adjustments made for increases in natural ground
cover during postfire recovery years.

Contour-felled log and straw wattle erosion barriers have the
ability to reduce erosion by slowing runoff and trapping runoff
and sediment. For modeling, straw wattles are assumed to be the
same as contour-felled logs. Measured storage potential,
trapping efficiencies, and performance of 3000 contour-felled
logs from six research sites were used to develop a hillslope
storage function based on the mean log diameter and hillslope
spacing (mean distance (m) between in-line log tiers). ERMiT
applies a regression relationship, based on user-specified mean
log diameter (cm), spacing (m), and slope (%), to determine the
potential storage capacity (PSC) for the hillslope:

PSC ¼ 1342
slope

þ 0:0029� ðlog diameterÞ2 þ 272
spacing

R2 ¼ 0:97 n ¼ 3000 logs

where PSC is potential storage capacity (m3 ha−1). PSC is
converted to a weight per unit volume based on measured
sediment bulk densities (clay loam sediment=1.1 g cm−3; silt
loam sediment=0.97 g cm−3; sandy loam sediment=1.23 g
cm−3; and loam sediment=1.16 g cm−3).

Based on field observations, the potential storage capacity is
rarely fully utilized. To compare the actual hillslope sediment
storage to the potential hillslope storage capacity, the sediment
trapping efficiency is calculated as the sediment stored behind
the contour-felled logs divided by the sum of the sediment
leaving the hillslope and the sediment stored behind the contour-
felled logs. Field data suggest that sediment trapping efficiency
varies with rainfall intensity. ERMiT calculates a weighted
maximum 10-min rainfall intensity (I10-W) based on the
maximum 10-min rainfall intensity (I10) estimated from each
rain event associated with the 5th-, 10th-, 20th-, 50th-, and 75th-
ranked runoff events. I10-W is calculated as the sum of the I10 for
each storm multiplied by its respective occurrence probability,
such that:

I10−W ¼ ðI10−5th rank⁎0:075Þ þ ðI10−10th rank⁎0:075Þ
þ ðI10−20th rank⁎0:2Þ þ ðI10−50th rank⁎0:275Þ
þ ðI10−75th rank⁎0:375Þ

where I10-W (mm h−1) is the weighted maximum 10-min rainfall
intensity and I10-5th rank, I10-10th rank, I10-20th rank, I10-50th rank, and
I10-75th rank are the maximum 10-min rainfall intensity (mm h−1)
estimated from each rain event associated with the 5th-, 10th-,
20th-, 50th-, and 75th-ranked runoff events, respectively.
Rainfall intensity for snowmelt events is taken to be zero.

Field data were used to determine efficiency functions based
on I10-W for two postfire years:

Year 1 : EFFy1 ¼ −0:84ðI10−W Þ þ 114

Year 2 : EFFy2 ¼ −1:4ðI10−W Þ þ 116
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where EFF is the trapping efficiency (percent) of the erosion
barriers and I10-W is the weighted maximum 10-min rainfall
intensity (mm h−1).

The sediment trapping efficiency of erosion barriers
continues to decrease with time because each sediment
producing event reduces potential storage capacity for the
next rain event. In addition, settlement, decay, and movement of
contour-felled log and straw wattle structures cause the hillslope
treatment to be less efficient with time (Robichaud, in review).
After Year 2, efficiency is estimated as a percentage of the
preceding year, such that:

Year 3 : EFFy3 ¼ 0:75� EFFy2

Year 4 : EFFy4 ¼ 0:55� EFFy3

Year 5 : EFFy5 ¼ 0:45� EFFy4

These changes in efficiencies are based on field observations
of erosion barrier performance and sediment storage changes
over time.
5.1. Example

In the example ERMiT run, the hillslope is evaluated to
determine the risk of postfire erosion that exceeds a manageable
limit for event sediment delivery. To establish output criteria,
the example scenario includes hypothetical conditions set
by a postfire assessment team. First, the team determined that
5 t ha−1 was the maximum tolerable event sediment delivery
Fig. 7. The tabular portion of the ERMiT output shows predicted single-rain
event sediment deliveries that have a 20% exceedance probability by postfire
year and by treatment for the hillslope of the example scenario. Circles ‘a’ and
‘c’ indicate embedded interfaces where user inputs can modify the output table
to evaluate a range of options. Circle ‘b’ indicates the printer icons that, when
clicked, call up data tables of predicted event sediment deliveries and occurrence
probabilities by postfire year.
in postfire year 1. Second, straw mulch treatment will be applied
if the year 1 risk of exceeding the event sediment delivery limit
(5 t ha−1) is greater than 20% and straw mulch application will
reduce that risk to 20% or less.

5.2. Model outputs

In the output table, the user can select (circle a, in Fig. 7) an
exceedance probability and the corresponding event sediment
delivery prediction is displayed by postfire year and by
treatment (Fig. 7). Within this embedded interface, the user
can evaluate the predicted sediment delivery over a range of
occurrence probabilities without rerunning the model. In
addition, by clicking on the printer icon to the right of each
treatment label (circle b, in Fig. 7), a full table of predicted event
sediment deliveries and their occurrence probabilities by
postfire year for that treatment are displayed on screen.
Contour-felled log or straw wattle erosion barrier treatments
need mean diameter (m) and log spacing (m) user inputs (circle
c, in Fig. 7) for event sediment deliveries to be predicted. The
tabular output screen allows the predicted event sediment
deliveries of the untreated hillslope to be compared to the
treated hillslope for each of five postfire years to determine the
potential benefit of postfire mitigation treatments (Fig. 7).

By setting the output table to 20% exceedance probability, it is
possible to compare the effects of mulching at different rates. On
the untreated hillslope, sediment delivery estimates with 20%
exceedance probability are over 15 t ha−1, which is well above the
5 t ha−1 tolerable limit set by the postfire assessment team.
However, mulching at a rate of 1.0 t ha−1 lowers the sediment
delivery estimate with a 20% exceedance probability to 2 t ha−1,
which is below the tolerable limit set by the postfire assessment
team.Mulching at a higher rate does not lower the predicted event
sediment delivery enough to justify the additional mulch.

6. Conclusions and management implications

ERMiT is a dynamic process-based model that can be readily
updated as additional data and validation results become
available. Unlike most erosion prediction models, ERMiT
does not provide ‘average annual erosion rates;’ rather, it
provides a distribution of erosion rates with the likelihood of
their occurrence. Such output can help managers make erosion
mitigation treatment decisions based on the probability of high
sediment yields occurring, the value of resources at risk for
damage, cost, and other management considerations. ERMiT
is most useful when managers determine an event sediment
delivery amount that can be tolerated without sustained re-
source damage and the probability of that event occurring. This
would likely vary within a burned area. For example, short-term
declines in water quality may be tolerable while damage to a
unique cultural heritage site would not, and modeling the
hillslopes above these two resources would likely require
different user-designated exceedance probabilities and treat-
ment criteria.

Application of postfire erosion mitigation treatments does
not eliminate erosion, but treatments can reduce the hillslope
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response to many rain events. After wildfires, managers can use
ERMiT to estimate the probabilities of erosion-producing rain
events occurring, the expected event sediment deliveries, and
predicted rates of recovery for the burned area. In addition,
realistic expectations of treatment effectiveness will allow
managers to make more cost-effective choices of where, when,
and how to treat burned landscapes.
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